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Abstract
As boundaries between Pre-Seed, Seed, and Series A continue to blur, traditional strategies for
allocating venture capital across these early rounds often lack robust quantitative justification.
In this paper, we propose a comprehensive framework for structuring a fund’s portfolio con-
struction across three critical sub-stages of modern seed investing: Pre-Seed, Seed Inception,
and Seed Expansion. We employ a Monte Carlo simulator that models multi-stage lifecycles and
power-law exit dynamics, then couple it with a Bayesian optimization routine to systematically
identify high-performing allocation policies. Using rigorous simulation and adaptive experimen-
tation, we provide a data-driven perspective on early-stage portfolio design that is particularly
well-suited to today’s larger, more competitive seed environment.

1 Executive Summary

This report applies a data-driven approach to portfolio construction at the earliest stages of venture
capital, modeling allocations across Pre-Seed, Seed Inception, and Seed Expansion under a power-law
exit environment. By combining Monte Carlo simulation and Bayesian optimization on millions of
candidate strategies, we evaluate fund performance using simulated Distributions to Paid-In (DPI).
Several key findings emerge:

1. Distribute Capital Across Multiple Early Stages. Diversifying initial bets among Pre-
Seed, Seed Inception, and Seed Expansion broadens coverage and raises the likelihood of
identifying “mega-winner” outliers.

2. Limit Follow-On Allocations. Allocating excessive capital to follow-ons erodes DPI by
narrowing the overall funnel and blending the overall entry valuation. In our simulations, a
minimal follow-on reserve per category yielded the strongest outcomes.

3. Maintain a Moderate Discovery Co-Investment Bucket. Allocating 5–20% to Discovery
investments optimizes fund performance by expanding portfolio breadth in a capital-e!cient
way, increasing the likelihood of capturing an outlier. However, allocating capital well beyond
this range diminishes returns as that expansion diverts capital from initial investments.

4. Fund Size Matters Less Than Discipline. Although larger fund sizes appeared optimal in
several runs, moving within the $110M–$150M range had a smaller e"ect than adhering to low
follow-ons and balanced stage allocations. Merely scaling the size of a fund up or down does
not guarantee higher DPI if sourcing quality cannot be maintained. In general, our results
indicate that how capital is deployed typically outweighs modest changes in total fund size.

Fund managers will see the best results by curbing follow-ons, diversifying early bets across the
di"erent categories of Pre-Seed and Seed, and selectively allocating capital to discovery investments.
This balanced, stage-aware strategy is best suited to an environment where a small set of winners
dominates outcomes.
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2 Introduction

During the last decade, the landscape of early-stage venture capital (VC) has undergone dramatic
changes in both the size and nature of seed funding. Today’s “Seed” can range anywhere from a $500k
ticket for a first-time founder still validating an idea to a $6m–$10m round led by serial entrepreneurs
with robust early traction, breaking the lines between what used to be clear distinctions between
Pre-Seed, Seed, and Series A. As a result, founders face higher expectations and must often traverse
an elongated timeline before achieving the metrics historically demanded at later funding rounds.
Traditional heuristics for allocating capital in early-stage ventures, for example, “invest in 30 deals
at the seed stage, save half for follow-ons”, struggle to capture these new complexities.

We have observed that many founders now need multiple “seed stage” checks, some smaller,
some substantially larger, before they reach the thresholds for a modern Series A round. In parallel,
multistage investors and new entrants crowd the seed arena, inflating valuations and changing how
quickly (or slowly) companies progress between milestones.

2.1 The Decomposition of “Seed”

The term “Seed” no longer represents a single, well-defined venture funding round. It can refer to an
early $500k ticket written before product launch (Pre-Seed), a $2m–$3m round backing a seasoned
founder with a partially validated product (Seed Inception), or even a $6m “Seed Expansion” round
that is e"ectively bridging a startup’s path to a $10m Series A. This enormous range not only
confuses founders and VCs, but also obscures the actual progress and risk profile of the company.

In our recent blog post “Seed is broken. Here is how to fix it”
1, we outlined a simplified scheme

to describe how seed-stage companies truly di"er. For many of the startups, we see:

• Pre-Seed (often under $2m) supports a team that may be first-time founders or early builders
just completing product discovery.

• Seed Inception (commonly $3–$5m, or more if the founders have a significant track record)
o"ers enough capital for a real product build, first hires, and initial market traction.

• Seed Expansion (again $3–$6m or beyond) “tops up” successful pre-seed or inception rounds,
bridging the gap toward the ever-larger Series A.

By distinguishing these sub-stages, we gain clearer insight into a startup’s maturity and risk
profile, and can allocate capital accordingly. In designing an early-stage venture fund portfolio
construction, one of our core questions becomes: How should we split our capital among these three

sub-stages, balancing smaller, earlier bets with larger checks for high-conviction expansions? Our
thesis is that the extremely skewed (power-law) nature of VC outcomes implies that both wide funnel
coverage (at Pre-Seed, Seed Inception, and Seed Expansion) and follow-on reserve can materially
a"ect final returns.

2.2 Portfolio Construction Considerations

Complexity in Portfolio Design. Even with the refined definitions of Seed, portfolio managers
still have to decide: How many deals should we back in each sub-stage? How large should each check

be? How much capital should we reserve for follow-on rounds? In a world where the line from pre-
product concept to mega-$6m “seed” round has blurred, ignoring the stage-based di"erences can lead
to suboptimal capital deployment. In addition, the small fraction of outliers that deliver outsized
returns means that an investor’s exact approach to stage selection, ownership targets, and follow-on
investment can drastically change fund-level metrics.

1https://www.moonfire.com/stories/seed-is-broken-heres-how-to-fix-it/
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Need for Quantitative Approaches. To tackle these complexities, simulation and automated

optimization o"er a much-needed complement to heuristic approaches. A carefully built simulation
can capture the following.

• Di"erent sub-stages of “Seed”, from Pre-Seed to larger Seed Inception and Seed Expansion
rounds.

• Varying probability of failure tied to the maturity of a startup.

• Potentially high valuations and increased valuation step-ups if the company gains traction.

• Significant dilution in follow-on rounds if the fund does not maintain pro rata ownership.

• The heavy-tailed nature of venture exits, where a small set of “home runs” skews overall returns.

An optimizer can systematically test allocation strategies. For example, how much of the fund
to deploy at Pre-Seed versus Seed Inception, how much capital to allocate to follow-ons, etc. This
paper demonstrates how such a simulation-optimization loop can yield deeper insights into stage
allocation than unstructured guesswork or simplistic “fixed fraction” guidelines.

2.3 Organization of the Paper

The rest of the paper is structured to address both the contextual underpinnings of why a more
refined breakdown of the seed stage is needed and the technical framework of how to build and
optimize such a fund design:

• Section 3 gives context to our approach by examining how early-stage deal sizes have evolved
and why modern seed rounds increasingly require multiple funding segments. It also reviews
empirical evidence for the power-law nature of VC exits, laying the groundwork for our simu-
lation assumptions.

• Section 4 provides a detailed rationale for modeling venture outcomes with a truncated power
law. We discuss key properties such as tail exponents, probability mass concentration, and the
practical upper bounds that justify a truncated approach. These considerations inform the
random exit draws in our simulation.

• Section 5 describes our core simulation methodology, including the multi-stage venture life-
cycle, valuation step-ups, dilution mechanics, and exit timing. It outlines how capital calls are
scheduled, how failures are accounted for, and how various scenarios (e.g., partial exits) can
be incorporated if desired.

• Section 6 introduces the Bayesian optimization strategy used to identify high-performing al-
locations. It explains how we formulate the optimization objective (DPI), define the parameter
space (e.g., fund size, category splits, follow-on reserves), and iteratively refine allocations via
an acquisition function.

• Section 7 delves into the recurring themes observed across multiple simulation-optimization
runs. We discuss how fund size, stage-specific splits, and follow-on budgets interact to drive
outcomes in a power-law environment, while highlighting patterns of convergence and practical
considerations for sourcing deals.

• Section 8 synthesizes our principal findings regarding stage allocation, follow-on constraints,
discovery investment strategies, and overall portfolio sensitivity. It also flags the limitations
of our model and proposes future directions, such as dynamic rebalancing and sector-specific
parameter tuning.

• Appendix A presents in-depth quantitative results from the Bayesian optimization trials.
We analyze allocations that maximized DPI, compare them against alternative strategies, and
illustrate how key parameters (e.g., follow-on fraction) influence performance under di"erent
assumptions.

5
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• Appendix B details the software architecture for our simulation framework. It describes
how the system is modularized into configuration objects, portfolio construction logic, and
a runtime engine capable of orchestrating multi-stage deals, capital calls, and exit events at
scale.

• Appendix C reviews how and why we use the Beta distribution to model holding periods in
our simulation. We discuss how changing ω and ε parameters shifts the distribution of exit or
follow-on timing from front-loaded to back-loaded, and how this flexibility allows us to match
di"erent observed patterns in real-world venture exits.

We now turn to Section 3 which aims to discuss the larger context on venture portfolio design
and empirical evidence for the kinds of highly skewed outcomes that motivate our approach.

6
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3 Background

Although the fundamental mechanics of early-stage venture investing have existed for decades, the
past few years have seen a dramatic evolution in “Seed” round sizes, expectations, and investor
competition. In this section, we first expand on the impetus behind distinguishing Pre-Seed, Seed
Inception, and Seed Expansion—three sub-stages that we view as essential for understanding
how capital can be e"ectively allocated in today’s environment. We then revisit the empirical
rationale for modeling exit outcomes with heavy-tailed distributions, an assumption that underlies
our simulation approach.

3.1 Why Three Sub-Stages of Seed?

Pre-Seed. Historically, “Pre-Seed” was a small ticket, often under $2m, allocated to a newly formed
or even pre-incorporation team. Founders of Pre-Seed startups might still be solidifying their product
concept or performing initial market validation. Pre-Seed is thus the riskiest capital in the sense
that the company has exhibited limited traction or external validation (if any). However, it is also
a chance to secure meaningful ownership at a lower valuation. Funds that excel at sourcing and
supporting talented founders early can capture enormous upside if the startup matures successfully.

Seed Inception. Between $3m–$5m, a “Seed Inception” round serves as the company’s true
“launch capital.” The team typically has a prototype or an early MVP (Minimum Viable Prod-
uct). These funds enable the hiring of key engineers and product talent, the refinement of the
product-market fit, and the initial go-to-market strategy. For experienced entrepreneurs, or where
the addressable market is very large, these checks can exceed $6m. In particular, the di"erence be-
tween a “Pre-Seed Startup” and a “Seed Inception Startup” could be measured just in 9–12 months
of extra product traction.

Seed Expansion. Often, even a $3–$4m initial seed is not enough runway in today’s market to
reach Series A metrics. Consequently, many teams raise a second or “expansion” seed, topping up
another $3–$6m to continue iterating on go-to-market strategy, to solidify revenue streams, and to
scale the team. In addition, especially experienced founders can often make a compelling case for
raising more growth capital earlier in the company’s lifecycle. For an investor, Seed Expansion can
often be an attractive investment opportunity when the founders have validated their product with
real customers or are demonstrating especially promising early traction.

3.2 Implications for Fund Design

By explicitly recognizing these three sub-stages, we decompose what used to be a single “Seed”
allocation into separate capital buckets. Each bucket has di"erent check sizes, success probabilities,
ownership targets, and follow-on dynamics. A key hypothesis we tested was whether the
relative proportions assigned to Pre-Seed vs. Seed Inception vs. Seed Expansion would
non-trivially influence overall fund performance.

• Too little Pre-Seed means missing out on opportunities that are extremely promising at their
lowest valuation.

• Too little Seed Inception might under-allocate to highly investable early ventures that are just
starting to show market validation.

• Too little Seed Expansion capacity could leave the fund unable to invest in seed rounds where
the founders are exceptionally experienced and/or when the company is exhibiting especially
promising early traction.

In addition, these strategic splits must accommodate the heavy-tailed nature of the outcomes,
in which a single outlier can return the fund.

7
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4 Mathematical Foundations of the Truncated Power Law

Venture capital is often characterized by a small fraction of deals generating disproportionately
high returns, while the majority produce modest or zero returns. This section first examines the
occurrence of such skewed outcomes, then formalizes how a truncated power law can be used to
model exit multiples. We conclude by explaining why we keep these distribution parameters fixed
when comparing di"erent portfolio strategies.

4.1 Rationale for Power-Law Distributions

A recurring theme in venture portfolios is extreme outcome concentration. In typical venture port-
folios, only a few positions account for the majority of the total gains. Factors like network e"ects,
first-mover advantages, or winner-take-all market structures often push certain companies to achieve
outsized growth, skewing the overall returns.

It is generally well understood that these large exits are more common than a normal or even a
lognormal model would predict. In other words, the “tail” of the distribution is heavier. Power-law
or Pareto-type fits,

P (X > x) → x
→ω

,

better capture the observed frequency of very large outcomes such as 50↑ or 100↑ returns. Although
these super-exits remain rare, they occur more often than would be expected under thinner-tailed
models.

However, in reality, no startup’s value can grow without limit. Even extraordinarily successful
IPOs or acquisitions have practical upper bounds, whether determined by addressable market sizes,
competitive dynamics, or other factors. Consequently, an unbounded power law is not fully realistic,
prompting the use of a truncated version. This truncated approach still acknowledges the possibility
of large multiples, but tapers o" probabilities at some maximum feasible exit level.2

A key parameter in these models is the exponent ω. A smaller ω (say 1.5–1.8) implies heavier tails,
meaning ultra-large outcomes remain relatively more probable. A bigger ω (2.5–3.0) makes home-run
exits rarer and imposes a steeper probability drop-o" beyond the typical valuation range. From a
practical standpoint, knowing the tail exponent is critical to understanding how often “unicorn-plus”
returns might appear.

Such heavy tails also interact strongly with multi-stage investment strategies. Because only a
few deals may drive most of the gains, the decision of which winners to back in follow-on rounds
can make or break fund performance. In our simulation, we incorporate the power-law exit model
into a multi-stage framework to see how the concentration of capital in potential outliers—and the
ability to maintain ownership—a"ects overall returns.

One might speculate that more skilled or sector-focused investors could alter the shape of the
power-law distribution itself, either by lowering ω (so that mega-hits are more common) or by raising
the maximum possible exit. Although this is plausible, the precise link between “competence” and
distribution shape is far from well understood, and there is no compelling evidence to support the
idea that skill simply shifts the tail. Consequently, for the purpose of our simulation environment, we
keep the distribution parameters fixed during simulations to avoid confounding the e"ect of investor
decision-making (capital allocation, follow-on strategy, etc.) with changes in the underlying exit
environment.

4.2 Mathematical Formulation and Model Parameters

To formalize these ideas, let X be the exit multiple of invested capital for a given company (so X > 1

indicates a profitable exit, and X < 1 implies a loss). If exits were distributed by an unbounded
power law with exponent ω > 1, the probability density function (PDF) would be:

f(x) → x
→ω

, x ↓ xmin.

2For more context on the truncated power law and it’s application to venture capital portfolio simulation, please
also refer to the report that we published in 2023 which explored this topic in a more narrow set of experiments:
https://arxiv.org/pdf/2303.11013.
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In practice, valuations do not extend infinitely, so we define a truncated power law on the interval
[xmin, xmax]. The PDF then becomes

f(x) =
(ω↔ 1)x

→ω

x
1→ω
min ↔ x

1→ω
max

, xmin ↗ x ↗ xmax,

with f(x) = 0 outside that interval. The normalization factor in the denominator ensures the PDF
integrates to 1.

Typical power-law parameters in venture capital contexts range roughly from ω ↘ 1.5 to 3.0.
The minimum value xmin might be close to 0.1 or 0.3 to accommodate near-total write-o"s, while
the maximum xmax could be set anywhere from 100 to 1,000 to represent potential “mega-exits.” In
our own simulator, we use default values of

ω = 2.05, xmin = 0.35, xmax = 600.

This choice reflects a moderately heavy tail, enough to allow occasional extreme outcomes yet still
keep returns within a plausible upper range. By fixing these parameters for all simulation runs,
we avoid mixing changes in the return environment (i.e. the power-law shape) with changes in
investment strategy. If desired, future versions of the model could relax this assumption to examine
scenarios where skillful investors systematically enjoy heavier tails, but that would introduce a
separate dimension of variability outside the scope of our current comparative analysis.

9
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5 Simulation Methodology

This section provides a detailed account of our venture capital (VC) simulation methodology, from
the initial capitalization of a fund to the terminal outcomes of individual portfolio companies. Our
overarching objective is to generate a representative Monte Carlo environment that captures the
uncertainties, high skewness, and multi-stage nature of early-stage venture investing. Although the
simulation is extensible to a variety of fund sizes, strategies, and markets, the discussion here focuses
on the core mechanics: how investments are created, how they progress through funding rounds,
how valuations evolve, and how exits ultimately impact portfolio-level metrics.

5.1 Overall Framework and Key Inputs

At a high level, the simulation revolves around three main components:

1. Fund Setup: We initialize a virtual VC fund with a specified size, management fees, and an
investment period over which new deals (initial checks) can occur. Any portion of the fund
that exceeds management fees is treated as investable capital and subdivided across multiple
categories (e.g., pre-seed, seed, follow-ons).

2. Deal Generation and Progression: The simulation generates “initial deals” for each cat-
egory within the investment period, spacing them out in pseudo-random fashion. Each deal
references an initial check (ticket size and ownership) and, potentially, follow-on checks. Com-
panies raised through these deals evolve or fail across a user-defined set of stages (Pre-Seed,
Seed, Series A, . . . ). At each stage transition, we apply a probability of failure, a valuation
uplift for successful progression, and track the possibility of investor follow-ons.

3. Exit Events and Performance Measurement: Companies that survive the final stage (or
at any stage, if so configured) exit according to a distribution of holding periods. The ultimate
returns are modeled as random draws from a truncated power-law, reflecting the highly skewed
nature of startup outcomes. The simulation computes aggregated fund metrics such as IRR,
DPI, TVPI, and MOIC, repeating the entire process multiple times to obtain robust statistical
estimates.

By default, the simulation loops over all companies in the portfolio once the final investment
horizon is reached, applying the exit logic for each surviving position. However, users can modify this
approach to accommodate partial exits at intermediate stages or alternative exit-timing heuristics.

5.2 Initial Fund Capital and Category Allocations

Before any deals are created, we define the gross fund size, including any management fees. The
actual capital available for investment is typically computed as

Investable Capital = Fund Size ↑ (1↔ Management Fees).

For example, a $120 million fund with 23.25% in fees (over the course of the fund’s lifetime) might
have approximately $92 million to invest in actual transactions. This investable amount is then
subdivided among a set of categories. Each category might correspond to:

• Early vs. Late Rounds (Pre-Seed, Seed Inception, Seed Expansion, etc.)

• Special Discovery Investment Buckets

Depending on the strategy, one may assign distinct ticket-size ranges or follow-on strategies to
each category. For example, a Pre-Seed category might limit initial checks to $0.8–$1.2 million,
aiming for a 10–15% ownership stake, whereas a Seed category might use $2–$3 million initial
checks. The user can configure these budget fractions and ticket-size distributions in advance. The

10
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simulation enforces the constraint that the sum of all category allocations equals approximately3

100% of the invested capital.

5.3 Deal Flow Generation and Capital Calls

One of the core tasks of the simulation is to schedule when initial deals take place within the
investment period of the fund (e.g., 2.5 to 3 years). Rather than place deals uniformly, we typically
employ an exponential or Poisson-like inter-arrival mechanism. Concretely:

1. Let N be the total number of initial deals desired across all categories (derived from each
category’s budget and average ticket size).

2. Convert the investment horizon T (in years) to days, obtaining 365T .

3. Draw N exponentially distributed inter-arrival times so that on average we reach N deals over
the 365T days.

By sorting the cumulative sums of these inter-arrival times, the simulation obtains a realistic
schedule of deals. Each category obtains its fair share of deals based on how many it is allocated.
For example, if “Pre-Seed” is allotted 20 initial deals while “Seed Inception” is allotted 40, the model
uses random sampling within each category to generate those 20 or 40 deals.

Quarterly Capital Calls. To reflect the notion that funds typically call capital in batches, the
simulation groups deals into quarterly windows. Each quarter, the total ticket sizes of all deals
scheduled within that window are summed, and if enough un-called capital remains, it is called from
the limited partners. If insu!cient capital remains, some deals may be skipped entirely, capturing
the real-world constraint of capital exhaustion. This process ensures that not all capital is available
on day one and fosters a more granular cash-flow timeline. These more realistic cash flows can be
used to calculate performance metrics such as IRR.

5.4 Stage Transitions: Failure and Valuation

After an initial investment is recorded, each company attempts to “move” through a predefined
sequence of stages (e.g., Pre-Seed ≃ Seed ≃ Series A ≃ . . . ). Two essential dynamics govern these
transitions: failure probability and valuation uplift.

5.4.1 Failure Probability and Signalling Risk

For each stage transition (e.g., from Pre-Seed to Seed), we assign a probability that the company
will fail to advance. For example, one might assume the following:

Stage Transition Failure Probability
Pre-Seed ≃ Seed 0.20 (20%)
Seed ≃ Series A 0.15 (15%)
Series A ≃ Series B 0.12 (12%)
Series B ≃ Series C 0.08 (8%)
Series C ≃ Series D 0.05 (5%)

Table 1: Stage Transitions and Associated Failure Probabilities

If a given company attempts to raise a new round and fails, its value is written down to zero
(immediate exit at $0). By default, the model interprets “failure” as an inability to secure follow-on
financing or a fundamental business collapse. This event ends the simulation for that company.

3Given the nature of large investment round sizes, it can be di!cult to construct a portfolio construction which
allocates exactly 100% of the investable capital. As such, we allow a minimal amount of flexibility for the optimizer.
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Furthermore, we incorporate signalling risk : if a fund previously held a large stake (e.g., above
8% ownership) but declines to follow on, the market might perceive this as negative information,
thus increasing that transition’s failure probability. Thus, if the base failure rate is pfail, signaling
risk might multiply it by some factor (e.g., 1.25). This approach captures the notion that other
investors may be disincentivized to invest if a lead investor refuses to reinvest.

5.4.2 Valuation Uplift and Ownership Dilution

If a company survives its previous stage, its valuation increases by a specific multiplier at each
successful round:

Stage Transition Valuation Uplift
Pre-Seed ≃ Seed 2.0↑
Seed ≃ Series A 3.0↑
Series A ≃ Series B 2.5↑
Series B ≃ Series C 2.0↑
Series C ≃ Series D 1.8↑

Table 2: Stage Transitions and Associated Valuation Uplifts

This factor is meant to approximate how valuations typically escalate with each successful round.
After applying the multiplier, the model infers how much new capital is raised. If existing investors
do not match their pro rata ownership in that new capital, they experience dilution, e"ectively
shrinking their ownership fraction by some median proportion (e.g., 20% for a typical Seed ≃
Series A round).

It’s important to note that these stage transition multiples are used for follow-on and dilution
modeling but not for determining final exit values. Instead, exit outcomes are drawn from a trun-
cated power-law distribution (see Section 5.5). This approach more e"ectively captures the skewed
nature of venture returns, where a few outliers drive most of the value. While stage multiples help
approximate ownership dynamics between rounds, they assume a more linear growth path, whereas
the power law better reflects the extreme variance in actual exit outcomes.

The combination of failure, valuations, and dilution significantly influences the eventual real-
ized value of each position, especially if the fund invests pro rata only in certain “winners”. Over
multiple stage transitions, a single strong performer might balloon in value, o"setting numerous
write-o"s—mirroring the well-known “power law” dynamic of VC portfolios.

5.5 Exit Timing and Distributions

Eventually, each surviving company undergoes an exit event. In our baseline approach, we assume
the following:

1. Holding Period: The simulation samples a random holding period H (in years) from a Beta
distribution on [tmin, tmax]. For example, if tmin = 4 and tmax = 10, the code transforms a
Beta(ω, ε) draw X ⇐ [0, 1] into

H = tmin +X ( tmax ↔ tmin ).

Larger values of ω in the Beta distribution skew exits to occur later in that range, while smaller
ω might cluster them earlier.

2. Exit Multiple: Once the company is scheduled to exit, a truncated power-law random variable
yields the final multiple of the invested capital. The probability density function (PDF) on
[xmin, xmax] is given by

f(x) =
(ω↔ 1)x

→ω

x
1→ω
min ↔ x

1→ω
max

, xmin ↗ x ↗ xmax,
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with ω > 1. A smaller ω indicates a heavier tail (more chance for extreme outliers). The
product of “total invested” and the sampled multiple becomes the final distribution to the
fund.

3. Distribution of Proceeds: We treat each exit as a full liquidation. If partial or staged
exits are desired, the user can incorporate advanced logic to schedule partial liquidity events
or secondary share sales at intermediate times.

At the portfolio level, these randomly timed and sized exits drive the computation of standard
VC performance metrics. Because multiple companies exit at di"erent times, the final realized
distribution is the sum of many stochastic outcomes, with a few “unicorn” or “mega” multiples
potentially dominating the final results.

5.6 Computing Portfolio Metrics

The simulation computes four principal metrics after all companies have either failed or exited:

• IRR (Internal Rate of Return): Incorporates the exact timing of capital calls (negative
cash flows) and exits (positive cash flows). If Dt is the net inflow or outflow on date t, the
IRR r solves

T∑

t=1

Dt

(1 + r)(t→t1)/365
= 0,

where we measure t in days (or any consistent unit). An IRR of 0% means that the fund
returned exactly its invested capital (in NPV terms), while a higher IRR indicates a more
rapid capital recovery.

• DPI (Distributions to Paid-In): Ratio of total capital returned (realized distributions)
over total paid-in capital. This metric ignores unrealized value, focusing on actual cash back
to LPs.

• TVPI (Total Value to Paid-In): Considers both realized distributions and any remaining
unrealized value in the portfolio, divided by the total paid-in capital. Thus,

TVPI =
Realized + Unrealized

Paid-In
.

A TVPI above 1.0 implies potential gains, though they are not guaranteed until those unreal-
ized positions exit.

• MOIC (Multiple on Invested Capital): Measures how much value has been generated by
the invested capital, often represented as a simple multiple (1.8↑, 2.5↑, etc.).

MOIC =
Realized + Unrealized

Invested Capital

By running the entire simulation multiple times, each with di"erent random seeds, one obtains a
distribution of outcomes for IRR, DPI, etc. Analysts can then measure the mean, median, or value-

at-risk (VaR) of these metrics, or compare multiple proposed strategies within the same environment.

5.7 Calibration, Sensitivity, and Extensions

A key advantage of this approach is its flexibility in calibrating the underlying assumptions:

• Failure Probabilities: Adjusting pfail at each stage can reflect harsher or more generous
funding environments, or di"erences across geographies (e.g., US vs. Europe).

13
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• Valuation Uplifts: Changing ui between rounds modifies the typical step-up in post-money
valuations. Lower uplifts yield more conservative valuations, while higher ones reflect “frothier”
markets.

• Dilution Percentages: The fraction of new equity sold at each round can be increased to
mirror larger rounds or decreased for smaller, more incremental raises.

• Exit Timing (Beta Distribution): Altering ω,ε or the range [tmin, tmax] can shift the
typical hold period for investments, capturing either quick M&A cycles or slower, more R&D-
intensive industries.

• Exit Multiples (Truncated Power Law): The exponent ω, lower bound xmin, and upper
bound xmax can be tuned to represent di"erent risk appetites or historical track records. A
heavier tail (ω closer to 1) raises the odds of a “mega” outcome.

In principle, one could also incorporate partial exits, bridging rounds, or advanced signaling
risk logic. The main idea is that this simulation environment is modular enough to handle these
complexities while preserving the same fundamental flow.
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6 Optimization Methodology and Rationale

This section presents an account of how we optimize the design of a venture capital (VC) fund’s
allocation strategy. Our main objective is to find a parameter vector that maximizes a given per-
formance metric, here the Distributions to Paid-In ratio (DPI). We begin by outlining how these
parameters relate to our underlying portfolio construction (e.g., pre-seed vs. seed allocations), and
then describe in detail how we embed a Bayesian optimization loop on top of repeated Monte Carlo
simulations.

6.1 Investment Categories

In our portfolio construction model (Sections 5 and B), we define investment “categories” correspond-
ing to di"erent stages or types of deals: Pre-Seed, Seed Inception, Seed Expansion, and Discovery.

Each category has a fraction of the total investable capital (i.e., net fund size after fees) assigned to
it, and these fractions determine how many deals and how large the checks can be. In addition, each
fraction is split further between initial investments and follow-on rounds. Hence, the fundamental
question is: How do we choose these category fractions and the initial/follow-on split to maximize

long-run returns?

6.2 Parameter Space and Fund-Level Variables

To encode the above decisions systematically, we introduce a parameter vector

! =
(
F, ϑpre, ϑinc, ϑexp, ϑco, ϖ

)
.

Below we define each component in more depth:

1. Fund Size (F ): A discrete choice (e.g., {110M, 115M, 120M, 125M, 135M, 140M, 145M,
150M}), which is the total committed capital of the fund. Our simulation subtracts manage-
ment fees to yield the investable capital, but F itself can vary so that we can test performance
across di"erent scale scenarios.

2. ϑpre, ϑinc, ϑexp: Each lies in [0, 1] and represents a raw weighting for the three main categories:

• ϑpre for Pre-Seed,
• ϑinc for Seed (or Seed Inception),
• ϑexp for Seed Expansion.

However, these ϑ-values do not directly sum to 1.0; we apply a softmax transformation (detailed
below) to turn them into actual allocation fractions for each category.

3. ϑco: Also in [0, 1], controlling how much capital is allocated to the Discovery category. Con-
ceptually, this discovery investment fraction is determined relative to the main categories’
fractions, since we typically want discovery investments to be smaller than the main cate-
gories or bounded in some proportion to them (e.g., we do not want discovery investments to
overshadow the main allocations).

4. ϖ ⇐ [0, 1]: The fraction of each category’s budget earmarked for initial vs. follow-on checks.
We usually map ϖ into a narrower interval such as [0.5, 0.95] to ensure that at least half the
category’s budget is used for initial deals and at most 95%.

Once we have the final category fractions, each category’s share of the fund is further subdivided

into initial and follow-on budgets via ϖ. Together, these parameters (F , ϑ..., ϖ) define a coherent
plan for how capital is distributed across the entire life cycle of the fund.
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6.3 Transformations: From Raw Parameters to Category Fractions

Softmax for Main Categories. The raw triple (ϑpre, ϑinc, ϑexp) is turned into normalized weights
via (

ωpre, ωinc, ωexp

)
= softmax

(
ϑpre, ϑinc, ϑexp

)
,

where
ωpre =

exp(ϑpre)

exp(ϑpre) + exp(ϑinc) + exp(ϑexp)
,

and similarly for ωinc and ωexp. We now have three fractions that sum to 1.0, describing how to
distribute all capital among the main categories—before discovery investment is considered.

Minimum Category Fractions. We may require that each main category has at least a minimum
fraction, say 5%, to ensure diversification. If any ωc from the softmax is below 5%, we may set
ωc = 0.05 and renormalize. This step prevents the optimizer from collapsing a category to a near-
zero fraction (which might be locally optimal but unrealistic for a broad investment mandate).

Discovery Fraction. Next, ϑco in [0, 1] controls how large discovery investment is relative to these
main categories. One approach is to define

ωco = max

(
0.05,

(
ϑco ↑ 0.9

)
min{ωpre, ωinc, ωexp}

)

so that discovery investment is anchored to the smallest main category fraction but is never below
some floor (e.g., 5%). After computing ωco, we reduce (ωpre, ωinc, ωexp) proportionally so that the
sum remains 1.0. This ensures that all four fractions, plus discovery investment, add up to 100% of
the investable capital.

Initial vs. Follow-On Splits. Finally, each category fraction ωc is split via ϖ. If ϖ is mapped to
[0.5, 0.95], then for each category c:

ω
(init)
c = ωc ϖ, ω

(follow)
c = ωc (1↔ ϖ).

Hence, if ϖ = 0.8, then 80% of category c’s capital is designated for initial checks, and 20% for
follow-ons. Altogether, we end up with 7 e"ective fractions (3 main categories ↑2 ways to split, plus
discovery investment initial) that determine how the fund invests capital in di"erent stages and at
di"erent points in a company’s life.

6.4 Objective Function: Expected DPI via Monte Carlo

Distributions to Paid-In (DPI). Recall that DPI is defined as

DPI =
Total Capital Distributed (i.e., returned to LPs)

Total Capital Paid-In
.

A larger DPI means we have recovered more money relative to what we spent (neglecting unrealized
value). Because the simulation includes random company outcomes, random exit multiples, and
random follow-on participation, DPI for a given set of parameters ! is a random variable.

Estimating Expected DPI. To approximate E[DPI | !], we run the entire portfolio simulation
nruns times with di"erent seeds (thus di"erent random draws) but the same !. Each run produces
a realization DPIj(!) for j = 1, . . . , nruns. The average,

D̂PI(!) =
1

nruns

nruns∑

j=1

DPIj(!),

serves as our estimator. By making nruns large enough (often 1,000 or 10,000), we reduce the Monte
Carlo error, increasing confidence in which ! yields superior DPI.
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Maximizing D̂PI. Our optimization target is thus:

!
↑
= argmax

!↓X
D̂PI(!),

where X enforces F from the discrete set, the raw ϑ... ⇐ [0, 1], ϖ ⇐ [0, 1], and all our min-fraction
constraints. We solve this problem via Bayesian optimization as outlined below.

6.5 Bayesian Optimization Process

Motivation. Without additional structure, searching ! ⇐ X might be done by random sampling
or a naive grid. But we risk running thousands of simulations without systematically honing in on
a better design. Bayesian optimization provides a structured approach: it builds a surrogate model

of D̂PI(!), uses an acquisition function to propose new ! values, and iteratively refines its model.
Explicitly, Bayesian optimization allows us to run more e!cient and targeted simulations, focus-

ing on the most relevant parts of the parameter space and avoiding wasted e"ort. This means the
modeling is more e!cient, allowing us to reach an accurate conclusion more quickly, and ultimately
leading to a better-optimized portfolio construction.

Surrogate Function. After each evaluation of !(t) (i.e., after computing D̂PI(!
(t)
) from nruns

simulations), we update a probabilistic approximation m
(t) that predicts DPI for any ! ⇐ X .

Commonly, m(t) might be a Gaussian Process (GP) or a tree-based regressor. The key is that m
(t)

tracks both the expected DPI at each point and the uncertainty in that estimate.

Acquisition Function. We then propose

!
(t+1)

= argmax
!↓X

a
(
! |m(t)

)
,

where a(·) might be Expected Improvement, Upper Confidence Bound, or another strategy that
balances exploitation (testing near known good solutions) and exploration (looking in uncertain
regions). We evaluate D̂PI(!

(t+1)
) via new simulations, feed the result back into m

(t+1), and repeat.

Stopping. Since each step involves many Monte Carlo runs, we place a cap max_trials (e.g.,
10,000). We can also stop if no improvement in best-found DPI occurs for, say, 250 trials in a row.

6.6 Putting It All Together

Algorithmically:

1. Initialize:

• Set up X : discrete F choices, ϑ... ⇐ [0, 1], min fraction constraints, etc.
• Launch a parallel worker pool for repeated simulation calls.
• Create the Bayesian optimization engine with Objective = maximizeDPI.
• Set bestDPI ⇒ ↔⇑.

2. Loop over t = 1, . . . , max_trials:

(a) Acquire next point :
!

(t)
= argmax!↓X a

(
! |m(t→1)

)
.

(b) Map raw ϑpre, ϑinc, . . . to final fractions ωpre, . . . ,ωco, and split by ϖ for initial vs. follow-
ons.

(c) Compute D̂PI(!
(t)
):
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• For j = 1, . . . , nruns, simulate the entire fund: generate deals, invest capital across
categories, sample failures and exits, compute DPIj(!

(t)
).

• Take average: D̂PI(!
(t)
) =

1
nruns

∑
j DPIj(!

(t)
).

(d) Update surrogate m
(t) with

(
!

(t)
, D̂PI(!

(t)
)
)
.

(e) Check improvement : if D̂PI(!
(t)
) > bestDPI, record it and reset any “no improvement”

counters.
(f) Stopping checks: if we exceed the maximum number of trials or if no improvement oc-

curred for more than the maximum number of allowed steps, stop.

By iterating this process, we adaptively refine a data-driven model of how each parameter a"ects
the expected DPI, gradually zeroing in on a better (and eventually best) design for the fund.
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7 Results & Observations

In an e"ort to understand the implications of the results of our optimization process, we ran the
full simulation optimization process several times. The results of a single representative run of the
optimization process are described in detail in Appendix A.

That being said, the process of running the simulation-optimization multiple times revealed
several recurring patterns and we believe that it is more important to focus on these higher-level
patterns rather than just the outputs of a single optimization process:

1. Low Follow-On Allocations Are Systematically Favored. Across nearly all simulation
runs which performed well, the fraction of capital reserved for follow-ons remained on the
lower end of the tested range. Reserving too much for subsequent investments reduces initial
coverage of new deals and, under power-law assumptions, depresses the probability of hitting a
“mega-winner.” In addition, larger follow-ons often blend up the fund’s overall entry valuation,
eroding potential multiples. Keeping follow-ons modest (often well below 20% per category)
consistently led to stronger DPI outcomes.

2. Maintain Consistency in Category Spreads. Despite small fluctuations in the exact
percentages for Pre-Seed, Seed Inception, Seed Expansion, and Discovery, the simulations rou-
tinely converged on a relatively balanced distribution of capital across these categories. In
other words, devoting the bulk of investable capital to just one or two ticket types rarely
emerged as optimal, indicating that multiple entry points help capture the rare outliers that
dominate fund returns.

3. Fund Size Exhibits Minimal Impact. While we examined multiple fund sizes (e.g. $110M–
$150M), variations in Distributions to Paid-In (DPI) across this range proved modest. Once
a fund surpasses a threshold necessary to diversify e"ectively and maintain a few follow-on
checks, simply adding or removing $10M–$20M of total committed capital did not materially
alter expected performance.

Taken together, these findings underscore that while the simulation can fine-tune specific alloca-
tion percentages, the broad lessons remain consistent :

• Avoid over-reserving for follow-ons.

• Maintain a relatively even spread across relevant ticket categories.

• Do not overemphasize marginal di"erences in fund size.

This suggests that portfolio construction, in early-stage venture, may be less sensitive than is often
assumed—provided the fund invests widely, stays stage-focused, and is disciplined about concen-
trated follow-ons.

7.1 Follow-On Capital Allocation Considerations

Although follow-on rounds can, in principle, help retain or increase ownership in promising compa-
nies, our simulations consistently indicate that large follow-on budgets lead to lower average DPI.
We highlight two key drivers:

• Breadth vs. Over-Concentration. A broad funnel of initial investments is essential in a
power-law environment, where a small number of outlier successes dominate aggregate returns.
Reserving too much capital for later checks diminishes the number of new deals the fund can
make, reducing the chance of capturing a mega-winner. Thus, large follow-on allocations often
depress overall DPI simply by limiting the initial deal flow.

• Entry Valuation Dilution. Follow-ons typically occur at higher valuations, which reduces
the multiple that can be realized upon exit. The more capital earmarked for these pricier
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rounds, the more diluted the total return becomes—particularly in scenarios where the subse-
quent step-ups fail to materialize as expected. Despite the perceived information advantage of
a follow-on investment bestowing a higher probability of investment return, it does not seem
like that increased probability of return outweighs the higher cost of the investment (in terms
of the entry valuation). Our simulation results show that raising the follow-on fraction can
quickly erode final DPI.

In practice, a moderate approach appears most e"ective: reserve enough follow-on capital to
double down on the most compelling opportunities, yet avoid locking up so much that it hinders
broad initial coverage. Our findings support keeping follow-on reserves in a restrained range in order
to balance incremental ownership upside with the need to cast a wide net at the outset.

7.2 Discovery Investment Observations

In our simulations, a modest discovery investment allocation (typically 5–20% of the fund) frequently
emerged in top-performing portfolios. While this was not always a strict requirement for high DPI, it
served as a flexible “reserve” that allowed opportunistic participation in deals that did not precisely
align with the main ticket categories (Pre-Seed, Seed Inception, or Seed Expansion).

At higher proportions of discovery investment (above 20%), performance often dipped, probably
because a too large bucket detracted from the purposeful coverage of the early stage. Conversely,
too small or nonexistent a discovery investment allocation reduced the fund’s agility to capitalize on
outside-the-thesis or out-of-cycle deals that showed strong potential upside.

In practice, maintaining a discovery investment fraction near 5–20% appears beneficial for bal-
ancing the fund’s primary mandate with the capacity to invest in exceptionally high-conviction
opportunities.

7.3 Trial-Level Variability and Convergence

In many of our runs, the Bayesian optimization converged toward a similar region of parameter
space, but the speed and path of convergence showed considerable variability. Early trials typically
spanned a wide range of configurations: some favored extremely large follow-on budgets (over 30%),
while others attempted concentrated deployments in just one or two ticket categories. Although
these extremes rarely yielded strong DPI outcomes, they were valuable for probing boundaries of the
parameter space. After 50–100 trials, the optimizer began to cluster around more balanced strategies,
especially with regard to how initial checks were distributed among Pre-Seed, Seed Inception, and
Seed Expansion. The shape of this convergence remained consistent across repeated runs of the
process, albeit with slight di"erences in how many trials were required before the best allocations
emerged.

An important byproduct of these repeated optimizations was evidence that localized maxima
exist within the broader parameter space. In other words, two di"erent allocations (e.g., 18% vs.
20% in Pre-Seed) can yield comparable DPI values over thousands of Monte Carlo simulations. Such
close results highlight that exact percentages are less critical than adhering to the broad themes
identified. Critically, allocating across stages, preserving moderate follow-ons, and ensuring enough
initial coverage to sample potential outliers e"ectively.

7.4 Summary of Observations

In aggregate, these observations reinforce the central theme that balanced allocations across Pre-
Seed, Seed Inception, and Seed Expansion, coupled with modest follow-ons, tends to produce robust
and repeatable returns in a power-law exit environment. The convergence patterns across multiple
optimization runs, the comparison with single-stage approaches, and the analyses of risk-return
trade-o"s all point to the same conclusion. While the exact fractions can vary slightly in high-
performing portfolios, the broader guidelines of moderate discovery investments, minimal follow-ons,
and a wide spread of initial checks consistently drive superior DPI outcomes.
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Balancing all these considerations in real-world venture environments will inevitably be more
nuanced, given sourcing constraints and unpredictable shifts in market sentiment (among other
di!culties). Nevertheless, these results provide a clearer sense of the trade-o"s and dynamics behind
each capital allocation decision, from the distribution of deal types to the pacing of follow-ons.
The next step for practitioners is to tailor these guidelines to their specific sector focus, network
advantages, and risk appetite, while retaining the simulation-based insights on how crucial it is to
keep coverage wide and follow-on commitments limited.
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8 Conclusion

This paper introduced a simulation-optimization framework to explore multi-stage early-stage VC
allocation policies under power-law exit assumptions. Our primary objective was to identify capital
splits across Pre-Seed, Seed Inception, Seed Expansion, and Discovery categories that maximize the
fund’s Distributions to Paid-In (DPI). Repeated Monte Carlo simulation coupled with Bayesian
optimization led to a few key conclusions:

• Minimize Follow-On Allocations. Small reserve budgets consistently outperformed more
aggressive follow-on strategies. Because outliers govern fund returns, broad initial coverage
raises the probability of capturing a mega-winner. Excessive follow-ons dilute this coverage
and diminish overall multiples by raising the average entry valuation.

• Balance Distribution Across Ticket Types. Rather than heavily emphasizing one sub-
stage, the best-performing portfolios consistently allocated capital across Pre-Seed, Seed In-
ception, and Seed Expansion. This balanced approach capitalizes on varied entry points along
a startup’s lifecycle while still preserving enough coverage at each stage to detect potential
“super-performers.”

• Fund Size Matters Less Than Discipline. Although the optimization occasionally gravi-
tated toward larger fund sizes, the observed di"erences across the $110M–$150M range were far
smaller than the impact of a sound capital allocation scheme. Once a fund is large enough to
deploy in multiple categories with modest follow-ons, further increases in total capital showed
diminishing returns—unless the fund’s sourcing quality can also rise proportionally.

• Maintain a Flexible Discovery Pool. Although not as critical as limiting follow-ons and
spreading initial checks across multiple stages, our results suggest that a modest discovery
investment bucket can improve portfolio adaptability. By earmarking around 5–20% of the
fund for opportunistic initial investments, managers can capture unforeseen high-upside deals
without compromising the core early-stage focus. Over-allocating to discovery investment,
however, can diminish the e"ect of a disciplined stage strategy and reduce total DPI.

In short, once a reasonable degree of diversification and stage coverage is achieved, how the capital
is allocated (particularly in limiting follow-ons) generally exerts a stronger influence on DPI than
a small up- or down-sizing in overall fund capacity. Funds that systematically maintain broad
early exposure and restrain follow-on reserves are best positioned to capture outsized returns in a
power-law environment.

8.1 Limitations

Although our enhanced simulations reinforce the broader notion that even spreads and low follow-ons
drive performance, certain caveats remain:

• Sourcing Constraints. We assume the fund can consistently source enough qualified oppor-
tunities at each stage to deploy allocated capital e"ectively. If suitable deals at Pre-Seed or
Seed Expansion are sparse, a balanced portfolio may be di!cult to realize in practice.

• Homogeneity of Exit Distributions. The power-law exit model is held constant across all
deal categories. In reality, deeply technical or capital-intensive sectors might exhibit di"erent
return dynamics than, say, consumer-software segments. Tailoring the distribution parameters
by domain could reveal more stage-specific nuances.

• Static Allocation vs. True Dynamism. Real-world GPs adapt allocations mid-fund in re-
sponse to performance signals, market conditions, or macro shocks. Our model sets allocations
ex ante, which, while informative, omits any adaptive re-balancing that could further improve
results.
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• No Fund-as-a-Whole Synergies. We do not model the possibility that success in one deal
might confer advantages (e.g., network, follow-on connections) that improve the chance or
quality of subsequent investments. In reality, strong early deals can enhance brand and deal
flow, potentially impacting future round access.

Despite these limitations, the repeated simulation and Bayesian optimization approach still o"ers
useful guidance by highlighting key levers (especially the importance of broad initial coverage and
limited follow-on reserves) that are likely to hold in a variety of real-world scenarios. Future exten-
sions might include sector-specific calibrations or dynamic fund re-balancing strategies to capture
second-order e"ects.

8.2 Future Work and Practical Extensions

Looking ahead, several possible extensions could strengthen the realism and utility of this framework:

• Dynamic Rebalancing: Introducing a re-optimization step after certain deal outcomes are
realized, thus simulating how GPs can pivot strategy mid-fund.

• Sector-Specific Tuning: Adjusting failure rates, valuation uplifts, and power-law exponents
for distinct domains (e.g., Security, Infrastructure & Tooling vs. Gaming, Community & Leis-
sure).

• Additional Performance Metrics: While DPI was our chosen target, exploring optimizing
IRR as a parallel objective might yield interesting results.

• Multi-Fund Cohesion: Coordinating multiple funds or parallel strategies (e.g., a dedicated
“opportunity fund” for Series B/C investments).

We hope this study illustrates the benefits of simulation + optimization in demystifying VC
fund construction. By systematically enumerating possible strategies in a realistic environment,
GPs can better tailor capital allocation to their risk/return profile, deal-flow expectations, and LP
preferences.

8.3 Final Reflection

Our initial motivation in building this simulation-optimization infrastructure was to identify an
“optimal” portfolio construction across Pre-Seed, Seed Inception, and Seed Expansion. While we did
uncover a set of strategies that outperform others on average, particularly those that limit follow-ons
to a modest range and distribute capital in a balanced way among the di"erent ticket categories,
our process revealed that once these broad guidelines are satisfied, further optimization has minimal

e!ect.
In short, many allocations within the same general range (e.g. whether Pre-Seed is 17% vs.

20% or whether follow-ons are capped at 12% vs. 15%) end up producing nearly identical average
DPI. This suggests that, rather than from meticulous tuning of each percentage point, e"ective
portfolio construction should focus on getting the core principles right: pursuing ample coverage to
catch outlier successes, keeping follow-ons at a minimal level, and maintaining some flexibility with
discovery investments. Beyond that, further e"ort should be spent on optimizing initial investment
decision quality.

23



© 2025, Moonfire The Science of Venture Bets

A Appendix: Optimization Results & Analysis

In this section, we present an expanded set of results from the Bayesian optimization routine de-
scribed in Section 6. After running over 300 trials (subject to stopping criteria) with a parallelized
Monte Carlo simulation of 10,000 samples (e.g. full fund simulation with a given portfolio construc-
tion) for each trial, we evaluated how the allocation parameters (ϑpre, ϑinc, ϑexp, ϑco, ϖ, and a discrete
choice of fund sizes) influenced the expected DPI of the fund (Distributions to Paid-In).

A.1 Identified Optimal Allocations

Through the final stage of the optimization, the best parameter vector discovered yielded the fol-
lowing:

• Pre-Seed: Initial 37.01%

• Seed Inception: Initial 24.04%

• Seed Expansion: Initial 18.15%

• Discovery: Initial 16.62%

Figure 1: A pie chart showing how the investable capital was spread across ticket categories in the
optimal portfolio construction configuration.

One of the most salient observations is the importance of balanced diversification across Pre-Seed,
Seed Inception, and Seed Expansion stages. Historically, many VC funds focus heavily on a single
sweet spot (e.g., purely at Seed or purely at Series A). Our results suggest that the distribution of
exposure across di"erent early-stage entry points, and maintaining minimal but non-zero reserve for
each stage’s follow-on commitments, produces higher expected DPI. We believe this emerges directly
from the power-law return distribution: capturing a broader funnel of deals raises the odds of hitting
a mega-winner, while still having su!cient follow-on resources to preserve ownership in that outlier.

24



© 2025, Moonfire The Science of Venture Bets

A.2 Allocation Distributions and Exploration

Figure 2 shows a violin plot capturing the distribution of the final 7 allocation fractions (Pre-Seed Ini-
tial, Pre-Seed Follow-On, Seed Inception Initial, Seed Inception Follow-On, Seed Expansion Initial,
Seed Expansion Follow-On, and Discovery Initial) sampled throughout the Bayesian optimization
search. We observe a broad coverage of the parameter space, an expected outcome given the large
number of Monte Carlo trials and the adaptive exploration procedure.

Figure 2: Violin plot of the 7 final allocation fractions across all trials. Each fraction is shown on
the vertical axis (ranging from near 0% to around 40%), illustrating the range of allocations the
optimization explored.

Based on these violin plots, we see that the initial investment allocation for each category has a
relatively wide range of acceptable values while the follow-on allocations consistently choose much
lower values within their allowable range. This suggests that the optimization process prioritizes
flexibility in the initial capital deployment to explore opportunities across a broad spectrum of
possible investments, while follow-on allocations are constrained by stricter criteria. The narrower
range of follow-on allocations potentially reflects a more cautious approach, ensuring that subsequent
investments are made with greater certainty and informed by the performance of prior allocations.
Such a pattern aligns with a conservative risk management strategy, where early-stage investments
are exploratory, and follow-on investments are reserved for opportunities with clearer potential for
growth or return.

This behavior underscores the balance between exploration and exploitation inherent in the
optimization process. By allocating more broadly in the initial stages, the model maximizes the
opportunity to identify high-potential investments, while the tighter follow-on distributions ensure
capital is concentrated in the most promising areas, optimizing overall portfolio performance.
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A.3 Fund Size Variation

Figure 3: Histogram of fund sizes explored in the updated optimization runs. While there is a
significant cluster around $150M, other executions of the optimization produced more erratic results.

Figure 4: Box plot of fund sizes compared to DPI results. As we can see, despite the optimizer
having a anecdotal preference for larger fund sizes, there is not a strong correlation between fund
size and DPI.

Our parameter space included a discrete range of fund sizes from $110M to $150M in $5M increments.
Figure 3 illustrates how often the optimizer sampled each of these sizes across the new set of runs. In
an e"ort to test the durability of the optimization process, we ran multiple independent executions
of the optimization. In all cases, one of two situations emerged: either the optimizer preferred larger
fund sizes or the optimizer sampled fund sizes relatively randomly. Yet, in the final trial that we
present here, the single best allocation strategy (in terms of DPI) emerged at $150M.
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This pattern underscores two important points. First, while the optimizer can hone in on a
particular fund size that best balances diversification and follow-on capacity in any given simulation,
repeated runs show that the overall di"erences in expected DPI among fund sizes are relatively
modest. Second, small variations in assumptions - such as deal availability, allocation fractions, or
power-law tail behavior - can cause the algorithm to favor slightly di"erent fund sizes from run to
run. Rather than indicating a strong preference for larger funds, this suggests that the optimizer
is responding to the nuances of each simulation instead of converging on a single "optimal fund
size". This reinforces the broader takeaway that how capital is allocated (i.e., among Pre-Seed, Seed
Inception, Seed Expansion, and Discovery) often proves more influential than simply whether the
fund is $120M, $125M, or $150M in total.

From a practical standpoint, these findings suggest that a fund manager’s primary focus should
remain on crafting a well-structured allocation strategy—e.g., balancing initial coverage versus
follow-ons—rather than fixating on adding or removing $5M–$10M of committed capital. Provided
the fund can source enough high-quality deals to remain fully deployed, shifting among mid-sized
fund targets (in the $110M–$150M range) likely exerts a smaller impact on expected DPI than does
managing the underlying investment policy itself.
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A.4 Sensitivity to Follow-On Allocations

A notable trend emerges when we examine slice plots of the simulation outputs, focusing specifically
on how changes in the fraction of capital allocated to follow-on rounds a"ect portfolio outcomes.
In these plots, we fix other parameters (e.g., the relative allocations to Pre-Seed, Seed Inception,
and Seed Expansion) and then sweep the follow-on fraction ϖ from lower to higher levels. Figure 5
provides one such example, illustrating how DPI correlates with ϖ.

Figure 5: Slice plot showing how DPI trends as the follow-on fraction ϖ increases. Each point
represents a distinct simulation run, with other parameters fixed. The downward slope indicates an
overall decline in expected performance as more capital is reserved for follow-ons.

We observe that DPI declines quite predictably as follow-on allocations approach the higher end
of the range, suggesting that diverting an excessive portion of the fund to post-initial checks may
undermine returns. Two core e"ects appear to drive this phenomenon:

1. Reduced Initial Coverage: Increasing the follow-on fraction shrinks the initial deployment
pool. Because power-law outcomes hinge on a few outliers, excessively limiting the number of
initial positions decreases the probability of capturing those rare “mega-winners.”

2. Capital Lock-In: Although follow-on reserves can secure pro rata in successful companies,
the high failure rate in early-stage VC means a large portion of that reserved capital may end
up either unused or invested in “middle-of-the-road” follow-ons that do not o"set the broader
opportunity cost.

Put di"erently, while some follow-on reserve may be beneficial for defending ownership in obvious
winners, our simulations indicate that a moderate follow-on fraction consistently outperforms more
extreme policies. This aligns with the broader conclusion (Section A) that optimal strategies typi-
cally allocate only a modest proportion of each category’s budget to late-stage checks, thus striking
a balance between breadth of initial bets and preserving enough ownership in truly exceptional deals.
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A.5 DPI Improvement Curve

A hallmark of successful Bayesian optimization is the progressive improvement in the objective metric
as trials proceed. We tracked the cumulative maximum DPI found after each trial (see Figure 6).
Early in the search, random or less-informed allocations produce baseline average DPI values in the
0.8–1.4 range. Over thousands of iterations, better parameter combinations are discovered, pushing
the best-found average DPI close to 1.6.

Figure 6: Cumulative maximum of DPI over trial index. The red scatter points represent actual
trial DPIs, while the blue line is the running maximum. The plateau suggests the optimizer has
found a near-stationary optimum.

Typically, during Bayesian optimization processes, we expect the performance of each trial to
trend upward as the algorithm increasingly focuses on e"ective parameter spaces. However, in this
case, the trial-by-trial DPI values exhibit significant variability throughout the search, with no clear
upward trend. This suggests that the optimization landscape may be complex, with a combination of
local optima and noise influencing the observed trial outcomes. Despite this, the running maximum
DPI steadily increases, indicating that the optimization algorithm is e"ectively navigating the search
space and identifying progressively better parameter combinations over time.

The observed variability in individual trial outcomes may also highlight the role of stochastic
elements in the process, such as the inherent randomness in Monte Carlo simulations or the inter-
play of highly sensitive parameters. This reinforces the importance of viewing cumulative metrics,
such as the running maximum DPI, to assess overall performance improvements rather than rely-
ing solely on individual trial results. Additionally, the plateau observed in the running maximum
suggests that the optimizer has converged on a near-stationary optimum, o"ering confidence in the
stability and reliability of the identified solution. This behavior underscores the utility of Bayesian
optimization in uncovering high-performing configurations, even in scenarios characterized by noisy
or non-monotonic response surfaces.

Another notable aspect of this optimization process is the implication of the plateau in the
running maximum DPI for practical decision-making. The leveling-o" observed in Figure 6 suggests
diminishing returns from further exploration, a common feature of well-tuned Bayesian optimization
procedures. This may be interpreted as a signal to transition from the exploration phase to deploying
the optimized parameters in real-world scenarios. Moreover, the ability to identify this plateau can
help reduce computational overhead by halting the search once a satisfactory solution has been
reached, saving both time and resources. This underscores the importance of monitoring cumulative
trends not only as a diagnostic tool for algorithm performance but also as a practical guide for
determining when to conclude the search.

29



© 2025, Moonfire The Science of Venture Bets

A.6 Detailed Allocation–DPI Relationship

To understand how each allocation fraction correlates with the DPI of the funds, we generate scat-
terplots of each fraction versus the resulting DPI (Figure 7).

Figure 7: Scatterplots of each major category fraction (x-axis) vs. DPI (y-axis). Clustering regions
indicate where certain allocations systematically outperform others.

The scatterplots reveal a recurring pattern for follow-on allocations, with higher DPI outcomes
clustering at the lower end of the follow-on fraction scale. These observations reinforce the notion,
first highlighted by our slice plots, that while some follow-on reserve is necessary to support breakout
winners, overspending on follow-ons can dilute overall performance by reducing the breadth of initial
bets.
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B Appendix: Implementation Architecture

This section discusses how our conceptual framework for simulating and evaluating a venture capital
fund is laid out in software. Although the code is not presented as a whole, we provide a high-level
overview of the architecture, highlighting how di"erent modules interact, the data they manage,
and the sequence in which events occur. Our goal is to demonstrate the cohesive design that
translates parameters and user configurations into a full Monte Carlo simulation of deal flow, follow-
on investments, and exits.

B.1 Overview

Our methodology constructs a synthetic venture portfolio by:

1. Allocating a Fund: Defining the total investable capital (after fees) and splitting it across
multiple investment categories.

2. Scheduling Deals: Generating initial deals within an investment period, grouping them into
quarterly windows for capital calls.

3. Tracking Stage Progression: For each company, applying sequential rounds of failure

checks, valuation uplifts, and dilution events, optionally factoring in signaling risk.

4. Final Exit: Sampling a holding period from a Beta distribution, then drawing an exit multiple
from a truncated power-law distribution. Computing realized proceeds for the investor, which
sum to the fund’s distribution.

5. Computing Metrics: Calculating IRR, DPI, TVPI, and MOIC at the portfolio level, op-
tionally repeating the entire simulation many times to estimate outcome distributions.

In the material that follows, we will explore how these conceptual steps are encoded in software,
illustrating the design patterns and object model that make the simulation extensible and modifiable
for real-world scenarios.

B.2 Core Components and Data Flows

Our implementation consists of three main components:

1. Configuration Component: Classes and objects specifying the fund’s parameters, category
definitions, and distributions (e.g., power law, beta) for exit timings or follow-ons.

2. Portfolio Construction Component: Functions and logic that transform these configura-
tions into actionable policies (e.g., how many deals to generate, how large checks should be,
and how capital calls are scheduled).

3. Runtime Execution Component: The simulation loop itself, where deals are created,
positions are updated through multiple stages, and final exits are computed. This component
also accumulates metrics like IRR, DPI, and so forth.

Although each component operates on distinct classes (e.g., FundConfig vs. Portfolio), they
form a pipeline: configurations feed the construction logic, which in turn informs the simulation
loop, which finally returns aggregated performance metrics.

B.3 Configuration Component

Fund-Level Settings. Users begin by specifying a fund size, a management fee rate, and an
investment period in years. The FundConfig class validates these inputs, ensuring, for instance,
that the investable capital (fund size minus total fees) remains positive.
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Category Definitions. In parallel, a CategoryConfig is provided for each conceptual investment
bucket (e.g., “Pre-Seed,” “Seed Inception,” “Discovery”). Each category includes parameters for:

• The initial investment policy: typical check sizes, minimum/maximum ownership, and any
stage-specific details.

• Optional follow-on policies dictating how much additional capital is reserved for subsequent
rounds (Series A, Series B, etc.), and under what strategy (pro rata vs. full ticket).

A user might define multiple categories if they plan to diversify across various round sizes or invest-
ment themes.

Distribution Choices. Finally, a PowerLawConfig, FollowOnConfig, and ExitConfig define the
random draws for:

• Exit Multiples: Governed by a truncated power-law distribution (Section 4), ensuring that
rare but large outcomes can occur.

• Follow-On Timing: Modeled with a Beta distribution, translating uniform samples into a
realistic spread of months or years after initial investment.

• Exit Timeline: Another Beta distribution for how many years (post-investment) a surviving
company waits before exiting.

By encapsulating these in separate configuration classes, we enable users to override individual
assumptions (e.g., a heavier power-law tail or a faster typical holding period) without altering the
rest of the system.

B.4 Portfolio Construction Component

Once the user defines a complete SimulationConfig (gathering FundConfig, category configura-
tions, and distribution parameters), the code calls a portfolio construction function. This logic:

1. Computes Investable Capital. Subtracting total management fees from the fund size yields
the net capital actually available for deals.

2. Allocates Capital by Category. Each CategoryConfig specifies an allocation fraction;
these fractions must sum (approximately) to 1.0. The code multiplies each fraction by the
total investable capital to determine each category’s “budget”.

3. Sets Initial and Follow-On Ticket Ranges. For each category, the initial stage has
a recommended ticket size policy (e.g., $500k–$1.5M). Similarly, each follow-on policy lists
min/max check sizes for subsequent rounds.

4. Computes Expected Deal Counts. Given each category’s budget and average ticket size
(estimated from the chosen range), the system infers how many deals the category can attempt.
This is only an approximate count, since random draws may yield slightly di"erent ticket sizes
in practice.

The output of this process is a PortfolioConstruction object that e"ectively maps user-defined
policy inputs into actionable instructions for the simulation loop (i.e., “we aim for N deals in Category
A, each with tickets in [$X, $Y],” and so on).

B.5 Runtime Execution Component

1) Deal Generation. Armed with the PortfolioConstruction specifications, the simulation
creates a Portfolio object. It samples random inter-arrival times for initial deals (using a Poisson-
like or exponential distribution), so that the deals are spread over the investment period. For each
initial deal, the system also probabilistically schedules one or more follow-on deals, spaced according
to the Beta distribution from the FollowOnConfig. These deals are sorted by date and grouped into
calendar “quarters” to mimic periodic capital calls in real life.
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2) Capital Calls and Execution. At each quarter boundary, the simulation totals the capital
needed for transactions occurring within that quarter. A capital call is made for that amount (or a
round approximation) as long as uncalled investable capital remains. If the fund still has capacity,
each scheduled deal is “executed”:

• Initial Deal: Creates a new Position in the Portfolio, recording ownership fraction, ticket
size, and date.

• Follow-On Deal: Updates an existing Position to reflect additional shares purchased,
changes in stage valuation, and resulting dilution for non-participating investors.

If capital is insu!cient, some deals may be skipped, capturing the reality that funds can run out of
deployable reserves before the end of the investment period.

3) Stage Survival and Signaling. After all deals are placed, each Position is retrospectively
checked for survival through its invested stages. For example, if a fund invests at the Pre-Seed
round and again at the Seed round, it calculates the probability of failing before Series A. The
FollowOnConfig enforces a signalling risk: if a large investor chooses not to re-invest at the next
stage, the chance of failure for that startup can increase. Positions that fail are written o" at $0.

4) Exit Events. Surviving positions eventually exit at a random time drawn from the Beta
distribution in ExitConfig. The multiple on invested capital is sampled from the truncated power-
law distribution. Multiplying the total invested amount by that multiple yields the final return, which
the simulation records in the Portfolio as a realized distribution (thereby increasing Distributions
to Paid-In, etc.).

B.6 Summary of the Implementation

In summary, the implementation of our system can be understood as a pipeline:

1. Configuration and Validation: The user sets up FundConfig, CategoryConfig, and dis-
tribution parameters. We ensure that the allocations sum to a coherent value and that the
ticket sizes, ownership targets, and stage definitions are consistent.

2. Portfolio Construction: A specialized function translates these parameters into budgets,
deal counts, and ticket-size policies. It also initializes the fundamental categories that will
guide investment decisions.

3. Runtime Execution: The simulation loop:

• Generates deals over time (initial vs. follow-on).
• Issues capital calls quarterly, invests in deals if capital remains.
• Applies stage-wise failure checks and updates valuations.
• Concludes with an exit event for every surviving position, using Beta timing and a power-

law multiple.

4. Performance Calculation: IRR, DPI, TVPI, and MOIC are computed at the end of each
run, and aggregated across multiple Monte Carlo runs to generate statistical profiles of the
outcomes.

This architecture provides a clear separation between policy definitions (the “what” of investment
strategy) and runtime mechanics (the “how” of capital deployment and exit realization). By main-
taining consistent interfaces among these components, we ensure that changing any single dimension
(e.g., altering the power-law exponent or adjusting category allocations) remains straightforward.
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C Appendix: Beta Distribution Parameterization

A key component in our simulation logic is the Beta distribution, which we use to draw holding
periods for follow-on investments and exit events (see Section 5.5). Mathematically, the Beta distri-
bution is defined for random variables X ⇐ [0, 1], and is parameterized by two positive real numbers
ω > 0 and ε > 0. Its probability density function (PDF) is given by

fBeta(x; ω,ε) =
x
ω→1

(1↔ x)
ε→1

B(ω,ε)
for x ⇐ [0, 1], (1)

where

B(ω,ε) =

∫ 1

0
t
ω→1

(1↔ t)
ε→1

dt

is the Beta function (a normalization constant ensuring the PDF integrates to 1).

Interpreting ω and ε.

• When ω < 1 and ε < 1, the density has peaks near x = 0 and x = 1, pushing draws to the
extremes.

• When ω > 1 and ε > 1, the density is more “bell shaped,” centered in the interior of [0, 1].

• Larger ω (relative to ε) skews the distribution toward 1, whereas larger ε (relative to ω) skews
it toward 0.

In our context, x represents a normalized fraction that is then scaled onto [tmin, tmax]—for instance,
4 to 10 years. The variation of ω and ε therefore changes whether the exit times tend to be “front
loaded” or “back loaded”.

Illustrative Parameterizations. Figure 8 shows six di"erent Beta distributions, each with a
distinct (ω,ε) pair. Note how changing ω and ε a"ects the shape and location of the PDF over
[0, 1]. In practice, we pick values that match observed patterns in average holding periods and exit
timing, but these parameters are user-configurable to model di"erent market conditions.

Figure 8: Examples of Beta distributions for di"erent (ω,ε) parameter values. Shifting ω and ε

modifies the skew or central mass of the density over [0, 1].
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